If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-12t-8=0
a = 3; b = -12; c = -8;
Δ = b2-4ac
Δ = -122-4·3·(-8)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{15}}{2*3}=\frac{12-4\sqrt{15}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{15}}{2*3}=\frac{12+4\sqrt{15}}{6} $
| p=2/3 | | -1=14+j | | (6x-5)=(7x-10) | | w2-14=35 | | 7/m-8=8/2 | | 7b-16=20+3b | | -3=7-2s | | -3x-32=-25-4x | | y/2*2=-10*2 | | x+(7/4)=3.86 | | -6-5(7k+3)=189 | | 2z+6+4z=Z-3+5z+12 | | 10z+5z-10=9z+8 | | y+y+1=107 | | 16v+2v+2v+4v-14v=10 | | 8x-2=19+2x | | 8-4x=1+13 | | 20x-15=14x+15 | | -10-6+5k=10k+9 | | 58=6z | | 4(2x+8)=-24+16 | | 16v+2v+2v+4v+4v=10 | | -15+19=-4(x+5) | | 9(b+6)=90 | | 9=3-6c | | g+9=-7-g | | 3x^2–18x+13=0 | | 5+7(y-1)+3y=2y+3 | | 3(3x−6)=0 | | 8-2b=2b | | 33x-2=2x+15 | | (2x-9)-(x-3)=1 |